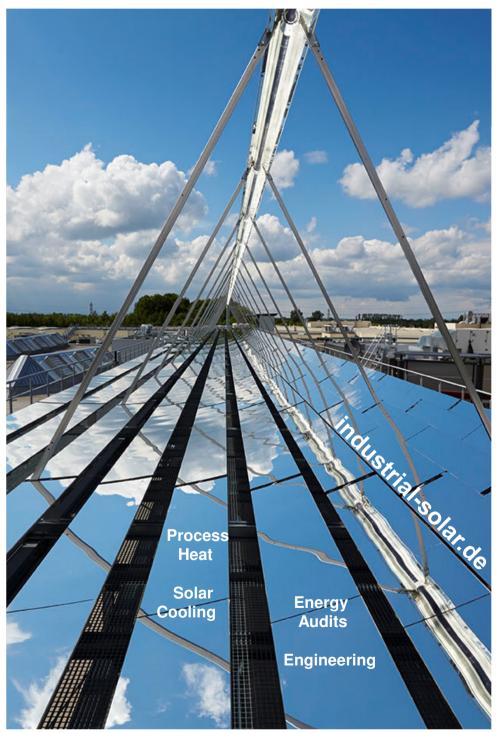


ISES webinar: New Business Models for Commercial Solar Thermal subtask Internal Rate of Return calculations for solar concentrating applications.


June, 23rd 2015

www.industrial-solar.de

Topics

- 1. Introduction Industrial Solar GmbH
- 2. Status Quo Commercial Solar Thermal
- 3. Main Economic Figures
- 4. IRR Explanation and Calculation for CSP
- 5. Conclusion

Company Profile

Industrial Solar GmbH is a provider of customized solutions in the field of renewable energy technologies on-site for process heat, cooling and power.

Core product is the Fresnel-Collector.

Industrial Solar's team has an extensive expertise in international projects from prefeasibility studies over Front-End-Engineering & Design (FEED) to turn-keyprojects for all kind of industrial applications.

- 1. Potential of solar-thermal process heat is huge and still underestimated
- 2. Increasing interest and budgets for commercial solar thermal investments
- 3. Low fossil fuels costs but increasing pressure to reduce its dependency
- 4. Solar heat generation costs (LCOE) are 3 7 € Cent/kWh depending on location and system size
- 5. Industry focus for RE is mainly on payback-time instead of IRR

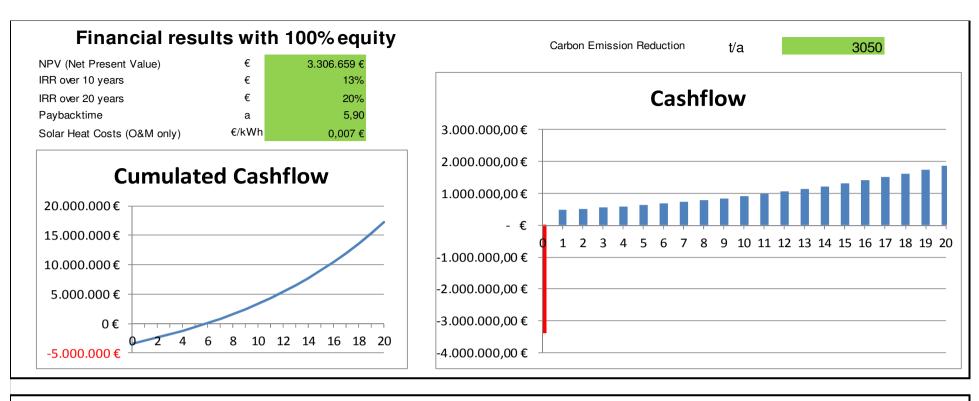
> Commercial solar thermal has a huge potential is gaining market momentum

Main economic figures

Payback-time: Period of time required to recoup an investment or Period of time to reach the break-even point. NPV: Defined as the sum of discounted cash flows over a period of time or Todays value of an investment **Cumulated Cashflow** Cashflow 3.000.000,00€ 20.000.000€ 2.000.000,00€ 6 year 15.000.000€ Payback-time / 1.000.000,00€ Break-Even 10.000.000€ - € 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 -1.000.000,00€ 5.000.000€ -2.000.000,00€ NPV = 3.3 m€ 0€ -3.000.000,00€ Sum of all discounted (10%) cash flows 8 10 12 14 16 18 20 4 6 -5.000.000€ -4.000.000,00€

- The internal rate of return (IRR) on an investment or project is the "annualized effective compounded return rate" or rate of return that makes the net present value (NPV) of all cash flows (both positive and negative) from a particular investment equal to zero
- It can also be defined as the discount rate at which the present value of all future cash flows is equal to the initial investment
- In more specific terms, the IRR of an investment is the discount rate at which the net present value of costs (negative cash flows) of the investment equals the net present value of the benefits (positive cash flows) of the investment

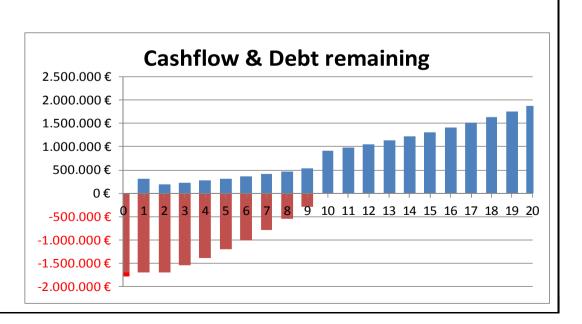
IRR - calculations for CSP


System Data		
Solar collector modules	#	648
Size of collector / aperture area	m²	14.256
Thermal peak power of collector field	MW	8,01

Investment			
Total Turn Key Investment	€	4.500.000	
Tax credit / Incentives rate	%	25%	
Tax credit / Incentives absolute	€	1.125.000	
Total Investment (after incentives, subsidies)	€	3.375.000	
Investment pro kW	€ / kW	421	
Investment pro m ²	€ / m²	237	

Yearly O&M Costs and other data		
O&M cost p.a. in % of total investment	%	2,0%
Escalation of O&M costs	%	5,0%
Yearly system degradation	%	0,25%
O&M	€ / a	90.000
Life time	а	20

Local Data and Energy Costs			
Location irradiation / DNI	kWh / m² / a	2.000	
ø yearly efficiency	%	42,5%	
Thermal earnings per m ² and year	kWh / m² / a	850	
Thermal Earnings (GHP north-south)	MWh/a	12.118	
Boiler efficiency	%	80%	
Fossil fuel (to calculate emissions)	type	Diesel	
kWh per kg fossil fuel	kWh	10,50	
Price per kg fossil fuel	€/kg	0,350	
Yearly increase of fossil fuel	%	7,5%	
Fossil Energy price at location (effective)	€ Cent / kWh	4,17	

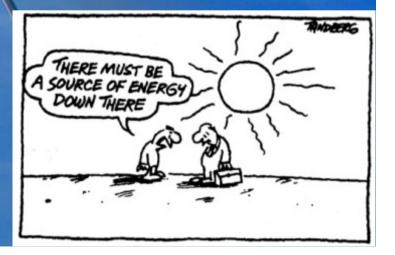

Financing Model		
Equity	%	50%
Debt / Loan	€	1.687.500 €
Equity	€	1.687.500 €
Debt / Loan Interest Rate	%	10,0%
Loan payments start in year	#	2
Number of payments	#	8
Discounting factor	%	10,0%
Annuity factor	%	18,74%
Annuity	€	316.312 €

Financial results with equity of: 50%

NPV (Net Present Value)	€	3.229.954 €
IRR over 10 years	€	15%
IRR over 20 years	€	23%
Paybacktime	а	6,21
Solar Heat Costs (O&M only)	€/kWh	0,007 €

IRR – Factors of Influence

- Local energy costs
- DNI of location
- Energy price increase
- System-size / System costs
- Tax credit & incentives
- Equity/Debt ratio
- Interest rate
- Loan period


Conclusion

- > Renewable energy (RE) investments are long term infrastructure investments
 - Thus RE investments should not be compared with investments into production-equipment of the core- business where short payback-times (1-3 years) are essential
 - > Therefore the IRR should have a higher priority than the payback-time
 - > Hence the IRR is an important indicator about the profitability of an investment
 - The IRR-expectations of an RE investment should reflect its specific risk-profile and sustainability effects

Thank you for your attention! www.industrial-solar.de info@industrial-solar.de

