Workshop "Technologies for solar cooling in tropical climates" Singapore, April 5, 2013

Solid large scale solar thermal cooling

UWCSEA East Tampines Campus Singapur

Large scale solar thermal heating and cooling plants:

- project development
- engineering
- construction
- operation & maintenance
- finance (ESCo)
- research & development

Solar cooling references

Location/Project	Cooling Machine	Constr.	Cooling Power	Collector Area
EAR Tower, Pristina, Kosovo	LiBr-Chiller	2002/3	90 kW	226 m ²
Wine Cooling , Leutschach, Austria	Ammonia	2003	10 kW	100 m ²
Graz – office, test Plant	Ammonia	2003	2 kW	8 m²
Stadtwerke, Crailsheim, Austria	LiBr-Chiller	2004	15 kW	500 m ²
Renewable Energy House, Brussels, Belgium	LiBr-Chiller	2005/7	35 kW	60 m²
Desert Outdoor Center, Phoenix, USA	LiBr-Chiller	2006	70 kW	126 m²
Olympic Village, Qingdao, China	LiBr-Chiller	2006	512 kW	638 m²
Estellas Restaurant, Tampa, USA	LiBr-Chiller	2007	70 kW	210 m ²
CGD Office Building, Lisbon, Portugal	LiBr-Chiller	2008	545 kW	1579 m²
Warehouse, Lanta, Phoenix, USA	LiBr-Chiller	2008	130 kW	504 m²
Office, Graz, Austria	Li Br Chiller	2008	17.5 kW	58 m²
Metro MAN, Istanbul, Turkey	LiBr Chiller	2009	Study	
Sheikh Zayed Desert Learning Center, UAE	LiBr Chiller	2010/12	400 kW	1108 m ²
United World College, Singapore	LiBr Chiller	2010/11	1400 kW	3900 m²
Desert Mountain High School, Scottsdale, USA	LiBr Chiller	2011/13	1700 kW	5000 m ²
DigiCel, Kingston, Jamaica	LiBr Chiller	2012	600 kW	982 m²

Sheik Zayed Desert Learning Center (UAE/AI Ain)

Solar Cooling via concrete core activation of a desert museum (18 /13 return/flow)

Cooling power: 400 kW Collector area: 1108 m² Expected Solar yield: 825 kWh/m²/year Commissioning: October 2012

Sheik Zayed Desert Learning Center (UAE/AI Ain)

Cooling power: 400 kW, Collector area: 1108 m²

Digicel, Kingston, Jamaica

From first call to start up in 16 months!

Digicel, Kingston, Jamaica

UWCSEA-EAST Tampines, Singapore

Solar Cooling & Hot Water for University Campus **Solar Panels:** 3870 m² / 2.7 MW **ESCo** In operation since 2011; first DHW, then cooling from october

World's largest Solar Cooling System

Finance scheme

Desing, dimensioning of SC plant

- hydraulic was dimensioned for low Delta-T, low pump electricity, high COP_{el}
- → large pipes, large volumes of water inside pipes (solar heat grid stretching over whole campus)

General

- DHW for boarding school, sports facilities: 100% solar; gas boiler in hot water room, but not connected to gas grid
- solar pumps for DHW cooling can run monovalently each or in parallel

- heat losses over night; long heat up phase over night of large volumina inside pipes for high temperatures
- →ACM heat supply temperatures were reduced
 shorter heat up time in the morning and
 longer operation hours in the evening

- in Oct 2012 motor valves were installed in the connection pipes of the 3 solar collector arrays were installed
- reduced heat losses over night; possibility of solar DHW preparation at night

Experiences of UWC operation

- Climate variations: NTU measured significantly lower solar irradiation in 2012 than in previous years
- el. COP 6-13; but optimization was for maximum cold supply
- el. COP to be further optimized(pump speed control, heat rejection)
- Chiller can work at supply temp as low as 60°C
- heat losses are important issue (natural circulation, valves, expansions)

UWCSEA-EAST Tampines, Singapore

solarinstallation+design

2012-07-06 21:06:35

Experiences of UWC construction

- core supply by Solid's experienced partners
- local supply of piping, steel works, tanksBezug
- solar thermal standards vs. local habits (piping)
- construction site management by Solid

UWC – Collector areas

3900 m² gluatmugl HT on 4 buildings

LiBr absorption chiller 1575 kW

CGD Bank Headquarter, Portugal

Bank building including hospital, theater, restaurants, 100,000 m² offices, 17 floors

Solar Panels: 1.580 m²

Cooling capacity: 545 kW

1100 kW Reheating, Heating, DHW

Operating since Feb. 2008

CGD – Solar Details

Solar Panels: 1580 m² gluatmugl HT roof integrated (W-SW, 0-S0, 25°) Storage: 2 x 5,5 m³ 15% freezing protection Heat exchanger on user side (DHW, heating, SC) 545 kW Bingshan LiBr chiller Wet cooling tower

CGD Bank Headquarter, Portugal

CGD Bank Headquarter, Portugal

Project under construction

Desert Mountain High School, USA

Scottsdale, Arizona, USA Cooling, Heating and DHW for Middle School and High school 500 tons /1750 kW_{th} of Cooling, 50,000 ft² collector area 10% larger than SOLID's Singapore project

DMHS Hydraulics

DMHS – Covered Parking

Thank you!

S.O.L.I.D. Gesellschaft für Solarinstallation und Design mbH Puchstrasse 85, 8020 Graz, Austria CEO: Christian Holter & Franz Radovic Tel: +43 316 292840-0 Fax: +43 316 292840-28 Email: office@solid.at http://www.solid.at

Moritz Schubert R&D, project development <u>m.schubert@solid.at</u> Tel: +43 316 292840-81

