Techniques for Energy Systems and Renewable Energies

Dipl. Phys. Manfred Reuss 01/2013

ZAE BAYERN

Vacuum Super-Insulated Heat Storage for High Solar Fraction

Dipl.-Phys. Manfred Reuss¹, Dipl.-Ing. (FH) Jürgen Melzer²

¹Bavarian Center for Applied Energy Research

Division: Techniques for Energy Systems and Renewable Energies Walther-Meissner-Str. 6, D-85748 Garching www.zae-bayern.de reuss@muc.zae-bayern.de

²HUMMELSBERGER

Schlosserei GmbH Am Industriepark 5, D-84453 Muehldorf www.vakuum-pufferspeicher.de info@vakuum-pufferspeicher.de

Techniques for Energy Systems and Renewable Energies

Dipl. Phys. Manfred Reuss 01/2013

Hummelsberger

Objectives

Development of a high efficient sensible heat storage for solar applications:

- Reduction of heat losses
- Increase energy density by increasing the operational temperature range e.g. 40/95 °C to …/130-150 °C
- Improve the performance by stratification

SMEThermal 2013

a)

BAVARIAN CENTER FOR APPLIED ENERGY RESEARCH

Techniques for Energy Systems and Renewable Energies

d)

Dipl. Phys. Manfred Reuss 01/2013

Thermal Insulation

Heat transport mechanisms:

- Conduction
- Convection
- Radiation

Conventional insulation materials reduce this heat transport significantly

	material		thermal conductivity (20 °C)	
	а	rock / glass wool	0.032 0.045 W/(m*K)	
	b	polyurethane	0.024 0.035 W/(m*K)	
	С	polystyrene	0.030 0.050 W/(m*K)	
	d	foam glass	0.040 0.050 W/(m*K)	

Hummelsberger

Techniques for Energy Systems and Renewable Energies

Dipl. Phys. Manfred Reuss 01/2013

Conventional Insulation and Humidity

- thermal conductivity up to 30 times higher, even above λ_{water}, even for low humidity, extremely critical above 70°C - 90°C
- F. Ochs et al., J. heat mass tr., http://144.206.159.178/ft/490/589701/12094719.pdf

4

ZAE BAYERN

Techniques for Energy Systems and Renewable Energies

Dipl. Phys. Manfred Reuss 01/2013

SMEThermal 2013

5

 only heat transport by radiation (dependent on emission ε of the walls and independent of the wall distance d)

advantage with respect to conventional insulation only for small gaps

Vacuum Insulation (VI) ("Thermos Flask")

- evacuation of the annular space below 10⁻³ mbar
- no convection, no gas thermal conductivity

 $\dot{\mathbf{Q}} = \frac{\mathbf{A}\,\boldsymbol{\sigma}\left(\mathbf{T}_{1}^{4} - \mathbf{T}_{2}^{4}\right)}{\left(\begin{array}{c}1&1\end{array}\right)}$

Hummelsberger

$$\begin{pmatrix} -+--1\\ \varepsilon_1 & \varepsilon_2 \end{pmatrix}$$

ZAE BAYERN

Techniques for Energy Systems and Renewable Energies

Dipl. Phys. Manfred Reuss 01/2013

Comparison of Insulation Techniques

Techniques for Energy Systems and Renewable Energies

Comparison VSI vs. Conventional Insulation

Hummelsberger

STAHL- UND METALLBAU

Source: VDI-Wärmeatlas, own measurements for VSI insulation

 \Rightarrow reduction of thermal conductivity by a factor of 5 - 7

 \Rightarrow avoid problems with humidity and aging

Techniques for Energy Systems and Renewable Energies

Dipl. Phys. Manfred Reuss 01/2013

ZAE BAYERN

Heat Transport in VSI

Techniques for Energy Systems and Renewable Energies

Dipl. Phys. Manfred Reuss 01/2013

Construction of a VSI Solar Storage

Hummelsberger

STAHL- UND METALLBAU

stratification unit heating

SMEThermal 2013

Techniques for Energy Systems and Renewable Energies

Dipl. Phys. Manfred Reuss 01/2013

Measurement Result: Thermal Conductivity

Hummelsberger

STAHL- UND METALLBAU

After 20 years 1,4 mbar -> Perlit: λ = 0,020 W/mK, pyrogenous silica acid: 0,005 W/mK 3 times better than dry mineral wool, re-evacuation easy possible

Techniques for Energy Systems and Renewable Energies

Dipl. Phys. Manfred Reuss 01/2013

Heat Losses Measurements

UA-value = 1,98 W/K, including pipes, connections and support of the inner tank λ of the insulation = 0,009 W/mK, potential to 0,007 W/mK

Techniques for Energy Systems and Renewable Energies

Dipl. Phys. Manfred Reuss 01/2013

Temperature Stratification

Two ways of heat supply to the storage:

- Indirect supply via heat exchanger (left)
- Direct heat supply by charging the fluid layer wise (right)

indirect system

direct system

Techniques for Energy Systems and Renewable Energies

Hummelsberger STAHL- UND METALLBAU

Dipl. Phys. Manfred Reuss 01/2013

Temperature Stratification

Stratification:

- 1. Development of a temperature stratification during charging
- 2. Supply the fluid in a stratified storage to the layer of the same temperature without destroying of the stratification

Techniques for Energy Systems and Renewable Energies

Dipl. Phys. Manfred Reuss 01/2013

Temperature Stratification

© Bavarian Center for Applied Energy Research

Hummelsberger

- Temperature stratification has operational advantages Ideal case: discharge the total heat content at a high temperature level
- Operational advantages (higher efficiency) for heat supply by solar collectors, heat pumps or condensing boilers
- Increases the direct use of solar heat
- Important feature for VSI storage because of low losses

Techniques for Energy Systems and Renewable Energies

Test of Various Stratification Units

Hummelsberger

Techniques for Energy Systems and Renewable Energies

Dipl. Phys. Manfred Reuss 01/2013

Experimental Results

OK

poor – mixing of the upper 2/3

Techniques for Energy Systems and Renewable Energies

Dipl. Phys. Manfred Reuss 01/2013

OK

almost perfect

Experimental Results

Hummelsberger

Techniques for Energy Systems and Renewable Energies

Dipl. Phys. Manfred Reuss 01/2013

Pilot Storages Produced According to AD2000

Hummelsbe Schlosserei Gm Am Industriepa 84453 Mühldor	erger bH irk 5 f am Inn	Hummelsberger		
Doppelwand Behälter	am 11.06.2012 0,35 mbar im Zwischenraum	CE	-1182	
Hersteller Nr.	665	Vakuum-Pufferspeicher.de VSI Vakuum-Super-Isoliert		
Baujahr.	05-2012	Inhalt Liter.	ca. 7000	
Projekt Nr.	110	Prüfdruck.	7,0 bar	
Betriebsdruck max.	3,5 bar	Betriebs. Temp. minmax.	5°C - 105°C	
Leergewicht.	3540 kg			
Behälter nach	EG Richtlinie 97 /	23 EG und AD-2000) Merkblätter	

Hummelsberger

STAHL- UND METALLBAU

Bayerischer Staatspreis

63. Internationale Handwerksmesse München 2011

Techniques for Energy Systems and Renewable Energies

Dipl. Phys. Manfred Reuss 01/2013

ZAE BAYERN

Solar Space Heating Application

Techniques for Energy Systems and Renewable Energies

Dipl. Phys. Manfred Reuss 01/2013

Solar Space Heating Application

Techniques for Energy Systems and Renewable Energies

Dipl. Phys. Manfred Reuss 01/2013

Hummelsberger

STAHL- UND METALLBAU

seasonal storage up to 100 °C

industrial process heat 100 - 300°C

solar power plants 400 - 700°C

Bildquelle: Wikipedia

Techniques for Energy Systems and Renewable Energies

ZAE BAYER

Dipl. Phys. Manfred Reuss 01/2013

Conclusions

VSI storage is applicable for

- > sensible
- Iatent
- thermo-chemical storage

VSI storage allows

- Iong-term storage with low heat losses
- solar space heating and DHW with high solar fraction

It is especially interesting for higher storage temperatures and interesting for industrial applications

- > process heat e.g. food industry
- waste heat and heat recovery
- district heating

Hummelsberger

STAHL- UND METALLBAU

ZAE BAYERN Wum-Superisolierter Bigeteinnespeicher mit neuestiger

Hummelsberger

Thank you very materiated

The project was funded by the Federal Ministry for Environment, Nature Conservation and Nuclear Safety FKZ : 03259644 the authors appreciate this support very much

The second s