Polymer Solar Collectors

Potential
Challenges
Solutions

Magen Eco-Energy

World leader in polymer solar absorbers and polymer heat exchangers

Focus on Direct Thermosiphon systems

Source:

Challenge 1: Thermal Performance

Maximum Transmittance, Absorptance with minimum thermal losses

Absorber:

000000000000

#120 x 6.5mm PP riser tubes,

Weight 2.5 kg/m² vs. Al-Cu ~1.5-2.0 kg/m²

Price: Al= 1.5 €/kg, Cu=6 €/kg, PP= 2 €/kg-

Performance comparison: -10% for PP

Saving potential - None

Casing:

PA 66 +GF Frame profile+ PU Back plate

Weight: Frame- PA 0.6 kg/m vs. Al 1.0 kg/m

Price: Al= 1.5 €/kg, PA=3 €/kg

Saving potential- None

Glazing:

Transmittance: Glass- 90%+, PC Twin Wall- 80%

Weight: 0.8 kg/m² vs. Glass ~8kg/m²

Price: Glass ~0.25 €/kg., PC- ~2 €/kg-

Performance comparison: -10% for PC

Saving potential: 0.4 €/m²

Challenge 2: Pressure & Temperature combination

Mode of operation	Conditions	Solution
During Operation	4 Bar 60-70°C 10-15 years	"Pipe Array Absorber"
Dry Stagnation	0 Bar 150+ °C ~3 months	Venting, Thermotropic Glazing Protection sheet Patented
Wet Stagnation	10 Bar 120+ °C ~ 3months	Pressure valve Thermotropic Glazing venting

Challenge 3- Header connection

Solution

Challenge 4: Thermal Expansion

Solution 1:
Absorber and pipe ports attached to top frame side

Solution 2:
Flexible
connection of
Absorber to Frame

Patented

Main Advantages of Polymer Collector

Corrosion Resistance

No Scale accumulation

Main Advantages of Polymer Collector

Mild Freeze Resistance

Pipe and roof Connections

Transportation and Conveying

Summary and conclusions

Polymer Solar collectors- Short term focus:

- Lower cost vs. high efficiency- focus on emerging markets with hot climate
- Simple & easy installation
- Direct systems for poor quality/ hard water/ High Chlorine content water areas
- Direct systems for mild freezing areas

Customer Benefits:

- Performance difference is negligible in those areas
- No need for specially qualified installers
- No need for special closed loop tanks, pumps and control systems

Growth:

EU-0.5%, US-2.2% ASIA: 7.5% ,Africa:5+% Latin America:3.9%

Long Term Focus:

New Materials/ composite materials:

- Price < 2.5 €/kg</p>
- Heat Deflection Temperature> 180 °C
- Long Term Stress/creep Resistance > 3 Mpa @ 80 °C
- Short Term Stress Resistance > 5Mpa @ 140 °C
- Long term weathering stability
- Low Thermal expansion coefficient
- Easy Processing- Extrusion, Injection

New Standards/ Modify existing standards

Combined solution for collector and tank

Building integrated polymer solar panels

Optional Solution 2:

Multiwall Polymer Sheet

Thank you

Challenge 1: Thermal Performance

Maximum Transmittance, Absorptance with minimum thermal losses

Requirements

Glazing:

- Transmittance (Over time- UV, Abrasion resistance, dust collection)
- **Strength-** Bend, Impact, positive and negative pressure
- Low thermal losses (IR reflectance, Low Conductivity)

Absorber:

- Ol vs. E
- Good conductivity between absorber and riser tubes or "multi risers absorber"
- Even flow

Casing:

- Maximum Insulation
- Minimum Non-effective area

Magen's Solution:

Glazing:

4mm Double wall PC Glazing with upper UV blocking layer

Absorber:

"Multi-Riser" PP absorber

Casing:

PA 66 +GF Frame profile, PU back insulation

Challenge 5: Wind (Negative Pressure)

500 Pa

5.9.2 Negative pressure test of the collector

The test pressure shall be increased in steps of 250 Pa until a failure occurs or up the value specified by the manufacturer. The test pressure shall be at least 1000 Pa. A failure can be the destruction of the cover and also the permanent deformation of the collector box or the fixings.

Source: EN 12975- Thermal solar system and components- solar collectors- test methods

Challenge 6: Long term weather impacts

UV Radiation

Dust collection

Glazing Abrasion

Water ingress

Challenge 2: Pressure & Temperature combination

