

Freiburg, September 2013

Implementation of the Energy Performance of Buildings Directive (EPBD) – Which role for renewable heating?

Oliver Rapf Executive Director Buildings Performance Institute Europe

Buildings are key in reaching long-terms goals

Low-carbon Economy 2050 Roadmap

GHG reduction vs. 1990	2005	2030	2050
Power	-7%	-54 to -68%	-93 to -99%
Industry	-20%	-34 to -40%	-83 to -87%
Transport	30%	+20 to -9%	-54 to -67%
Residential and services	-12%	-37 to -53%	-88 to-91%
Agriculture	-20%	-36 to -37%	-42 to -49%

- Roadmap for a Resource-Efficient Europe 2050: buildings influence 42% of the final energy consumption, 35% of the CO₂ emissions, >50% of all extracted materials and 30% of water consumption.
- Energy 2050 Roadmap: "energy efficiency potential in new and existing buildings is key"

Energy Performance of

Buildings Directive (31/2010/EU)

TE BOOM	performance & - Cost-op	inimum energy performance requirements timal methodology (common framework) ments for technical building systems
	Existing implem	ouildings undergo major renovation should ent energy efficiency measures m requirements for buildings and components
	New Buildings Hearly Zero Energy Buildin	 By 31 Dec. 2018 public admin. buildings By 31 Dec. 2020 all buildings National plans for nZEB
	Energy performance - Rec	plement EPC schemes commendation for cost-optimal improvements ependent control systems
	HVAC Inspection	inspections (heating > 20kW, AC>12kW) Ident control systems
		s: to prepare lists of measures and instruments te into account cost-optim. for these measures

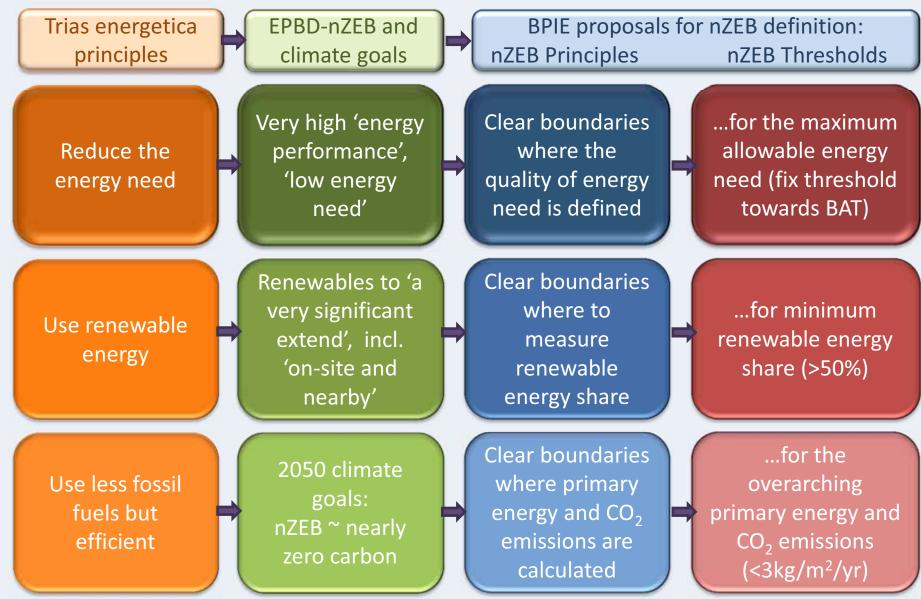
Introduction of a new concept: nearly Zero-Energy Building (nZEB)

- A 'nearly zero-energy building' [...] has a very high energy performance (for HVAC, DHW, aux. equip. and lighting).
- The nearly zero or very low amount of energy required should be covered to a very significant extent by energy from renewable sources, including on-site or nearby RES. (EPBD, 2010)

EPBD recast→<u>nZEB</u>:

- All new buildings, by 31 December 2020
- All new buildings occupied and owned by public authorities, after 31 December 2018

RES Directive: EU MS have to introduce minimum requirements for RES for new buildings and renovation, by 31 December 2014 Challenge: To find the synergy between energy efficient demand and renewable generation


- Efficiency has its limits and it is not possible to drive energy demand down to zero
- **Renewable energy** has a price and there are local disparities

Need for a sustainable nZEB definition

nZEB definitions and implementation roadmaps in EU MS

@BPIE_eu

- BPIE studies for Poland, Romania and Bulgaria
- For SFH, MFH and office buildings
- Evaluation on simulated improvement options towards nZEB levels for new buildings
- Proposing affordable but ambitious nZEB definitions (aprox. 50kWh/m²/yr, >40% RES, <3-7 kg CO₂/m²/yr)
- Proposing policy implementation roadmaps by 2020

Simulated nZEB variants and heating solutions

	Reference SFH	Reference MFH	Reference Office
V0	Reference	Reference	Reference
V1	+ mech. ventilation with heat recovery	+Improved building shell	+Improved building shell
V2	+ improved building shell	+Mech. ventilation with heat recovery	+Improved building shell + external shading
V3	+Improved building shell + improved mech. ventilation with heat recovery	+Improved building shell + mech. ventilation with heat recovery	+Improved building shell + external shading + improved lighting
V4	+Improved building shell + improved mech. ventilation with heat recovery + solar collectors	+Improved building shell + mech. ventilation with heat recovery + solar collectors	Close to Passive house standard
Α	Wood pellet boiler	Wood pellet boiler	Central air/water heat pump
В	Air source heat pump	Air source heat pump	Central brine/water heat pump
с	Ground collector brine heat pump	Ground collector brine heat pump	Central wood pellet boiler
D	Gas condensing boiler	Gas condensing boiler	Central gas condensing boiler
E		District heating	District heating

Additionally: with and without CO₂ compensation (by a rooftop PV system)

SFH in Bulgaria – simulation results

			Witi	iout CO,	compensat	ion	3	Vith CO ₂ co (by addi	ompensation tional PV)	ij	
	Vis dia unte	Prail specific certand [KWh/hr2/yr]	Primary energy demaid [kvh/m²/y]	CD, emissions (he_CD,/m*)yr)	Renewable share [%]	Tota: addtonal annualised costs [Euro/m?yy]	Prime y energy damand* [kvh/rr2/yt]	CO, emissions (kgCO,/m ² /y ¹	Renewable share [16]	ddittonal d costs	With dditional PV All solutions ost-effective
	V0 - Reference	169.9	86.4	45.1	50N	0	na	n,a.	n.a.		
	VI - Air heat pump	755	201	6.4	3590	REPART	1 - H	0	HIND		-7.12
	VI Brine heat pump	21.2	42.5	5,4	35%	É.T.		0	Liste		
	V1 - Dio boller	-01	21.9	9,5	- 1999-	4.70	110	0	1045		-4.85
	VT - Gas boiliar	1. JI	100	18.5		-5.98	má i	THE .	3/%		-2.75
	V2 Air heat pump	19.4	-39	4.9	35%				1450		-3.51
	V2 - Brine heat pump	- 18	22.9	18	35%	-4.95	1	0	145%		
	V2- Sin boller	- 4	UNK.	8.4					11000	-441	
	V2 Gas boiler	11	20.4	14.4	1.00	5.22	144	22	38%	1.52	
	V3 - Air lieat pump	20.8	41.8	5.3	35%	+78	- 6	6	1256	-3.52	
	V3 - Brine beat pump	181	1.06.41	4.6	35%	5.69	- 6	0,0		31	
	V3-Bio boiler	22.1	1619	9.0	30	2.96		100	105%	225	
	V3 - Gas botler		10.6	14.2	16		15.9	6.4	47%	0.28	
Loolor	V4 - Air heat pump	156	H	2.9	35%	-0.13	2	- 0	1155	4.93	
+ solar collectors	V4 - Brine heat pump	13.5	- 32.1	- 301	35%	-4.85	0	0	1358)	-2.21-	
CONCLUIS	V4 - Sto boiler	19.4	18,2	0.5	989	2.75	2.9	8	10896	2.04	
	V4-Gas boller	49.4	55.9	101	100		97	10	1999	1	
		380	SHL	191	- 196	5	:40		M	-4	
00015		40-x<60	40-ex-70	4-cx<7	30-cx-50	Sect0	40-cx<70	Acart	30-cx<50	Sexc10	
@BPIE_eu		199	100	-	131	518	1.00	14	- 2	-10	BPIE

Implementing the cost-optimal methodology in EU countries – BPIE study

- To offer additional guidance to MS on how to implement the cost-optimal methodology, based on practical case studies for Austria, Germany and Poland
- To highlight the links between costoptimality and nZEB
- To highlight the stringency of aligning building regulations with long term climate goals

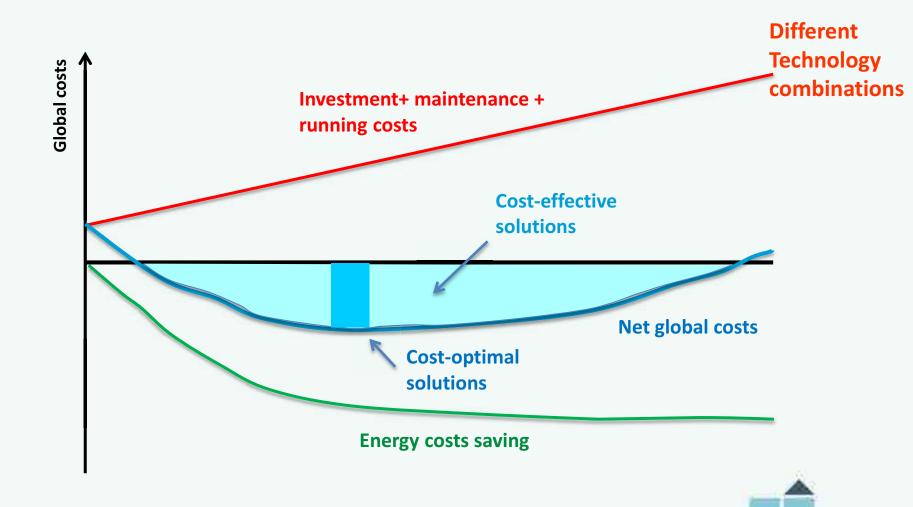
What is the cost-optimal requirement?

EPBD introduced a common framework methodology for MS on how to set energy performance requirements for buildings by considering the economic aspects (global costs) as a driver for improving technical building codes

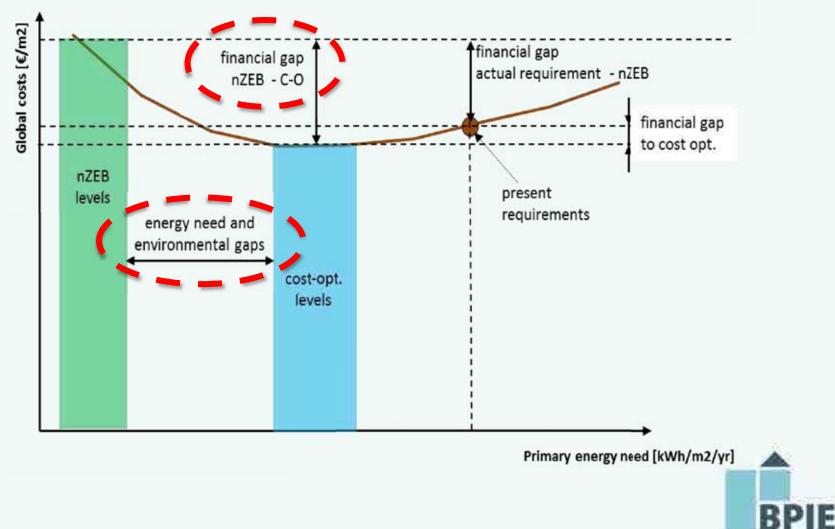
Rationale:

Equivalent level of ambition in all MS, but no harmonised requirements

> Aims:


-Shift focus from upfront investment costs to global life cycle costs (including energy costs)

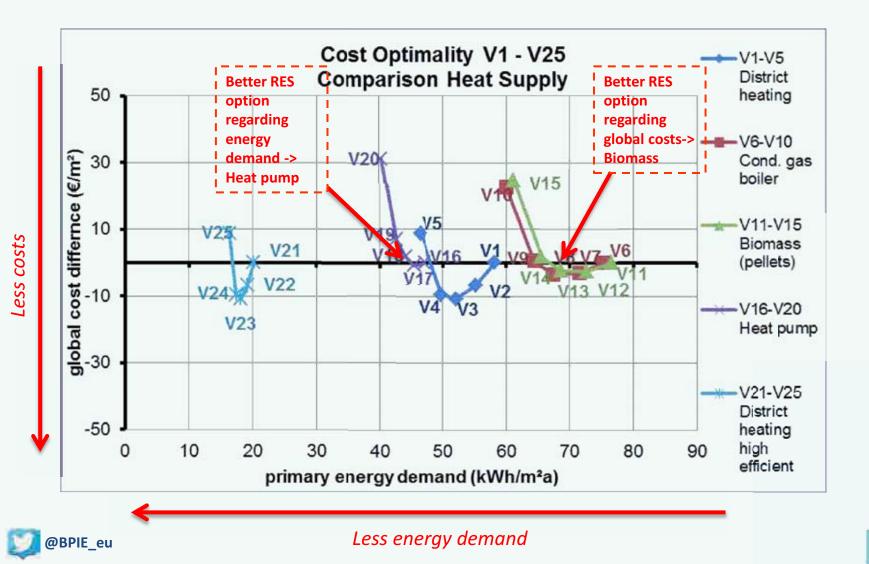
-Tightening the building codes for new buildings and renovation of the existing buildings


Cost-optimal and cost-effective

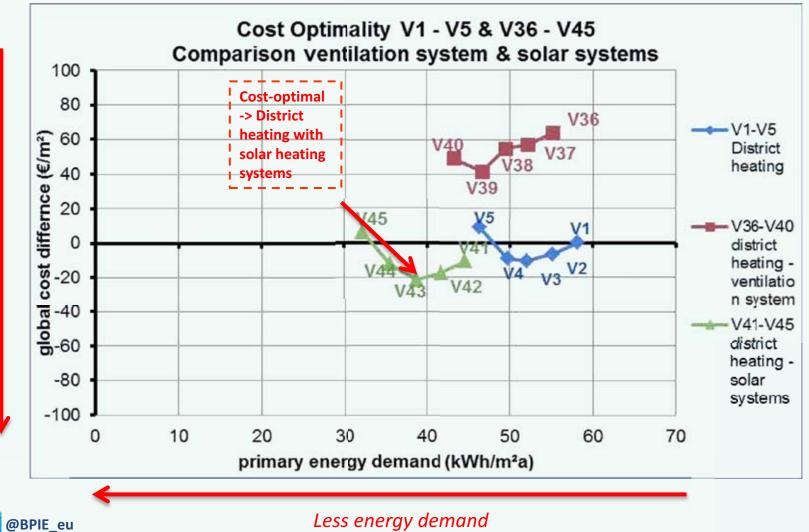
BPIE

Cost-optimality as a tool for evaluating nZEB

Example: cost-optimality in Austria (for MFH)


- > Altogether **50 different technical variants** have been defined
- Elements of differentiation as follows:
 - Insulation standards: Five different levels actual minimum requirement (NHD-line 16) → passive house (NHD-line 8)
 - Heat supply: district heating → gas condensing boiler,
 biomass boiler, heat pump, highly efficient district heating
 - Insulation material: EPS \rightarrow mineral rock wool
 - Share of window area: 20% in basic case → 4 additional variations
 - Ventilation system: in combination with high insulation standards → (partly) abandonment of static heating system (radiators in the flats) improved airtightness levels
 - Solar system: solar-thermal only → combination of solarthermal and PV

Results reference scenario Austria:


Different energy supply systems

BPIE

Results reference scenario Austria:

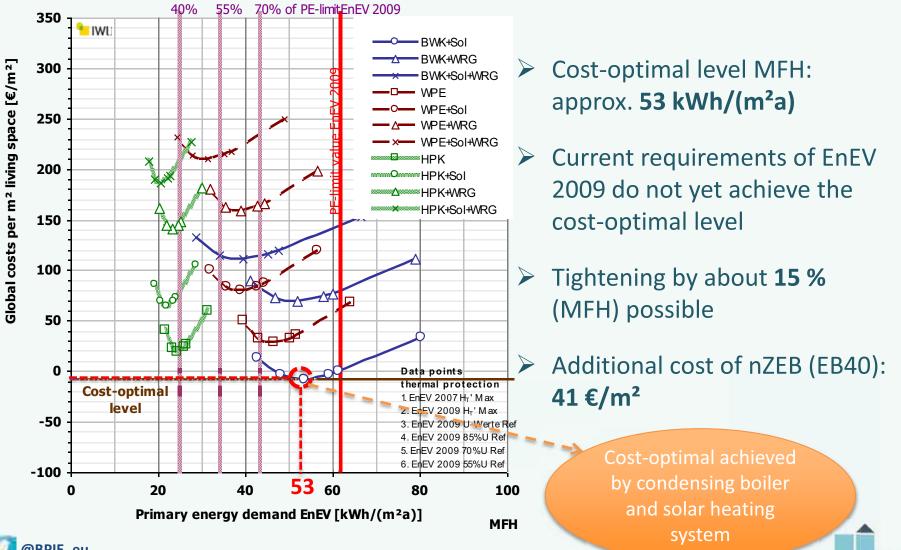
Different ventilation and solar systems

BPIE

Less costs

Example: cost-optimality in Germany (for SFH & MFH)

MPLEMENTING THE COST-OPTIME METHODOLOGY IN EU COUNTRIET CAME SIUDY OLIMANY	Stand
+C	Therm
B PTE	- IWU

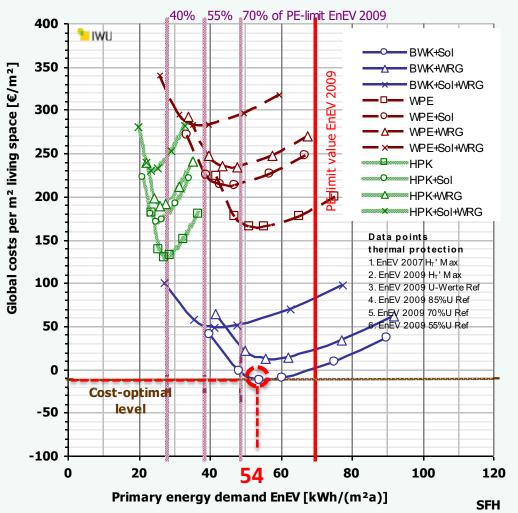

JAL.

Standard	Variant 1	Variant 2	Variant 3: Reference case	Variant 4	Variant 5	Variant 6
Thermal protection	EnEV 2007 HT'Max ≤H' _{Tasi}	EnEV 2009 HT' Max ≤H" _{1nd}	EnEV 2009 U Ref	EnEV 2009 U Ref 85%	EnEV 2009 U Ref 70%	EnEV 2009 U Ref 55%
	according EnEV 2007	according EnEV 2009	U-Values EnEV 2009 reference building	85% of "EnEV 2009 U Ref"	70% of "EnEV 2009 U Ref"	55% of "EnEV 2009 U Ref" (~ U-values of passive house)

Measures acronyms	Heat supply systems		
BWK	Condensing boiler (gas)		
BWK+Sol	Condensing boiler (gas) + solar heating system		
BWK+WRG	Condensing boiler (gas) + ventilation system with heat recovery		
BWK+Sol+WRG	Condensing boller (gas) + solar heating system and ventilation system with heat recovery		
WPE	Electric heat pump / heat source soil		
WPE+Sol	Electric heat pump / heat source soil with solar heating system		
WPE+WRG	Electric heat pump / heat source soil with ventilation system with heat recovery		
WPE+Sol+WRG	Electric heat pump / heat source soil with solar heating system and ventilation system with heat recovery		
НРК	Wood pellets boiler		
HPK+Sol	Wood pellets boiler + solar heating system		
HPK+WRG	Wood pellets boiler + ventilation system with heat recovery		
HPK+SoI+WRG	Wood pellets boiler + solar heating system + ventilation system with heat recovery		

Results for Germany: Global cost levels MFH

Financial perspective



BPIE

🧾 @BPIE_eu

Results for Germany: Global cost levels SFH

Financial perspective

- Cost-optimal level SFH: approx.
 54 kWh/(m²a)
- Current requirements of EnEV 2009 do not yet achieve the cost-optimal level
- Tightening by about 25 % (SFH) possible
- Additional cost of nZEB (EB40):
 101 €/m², compared to
 EnEV09 (=0 €/m²)

Moving towards nearly zero-energy buildings

Important considerations

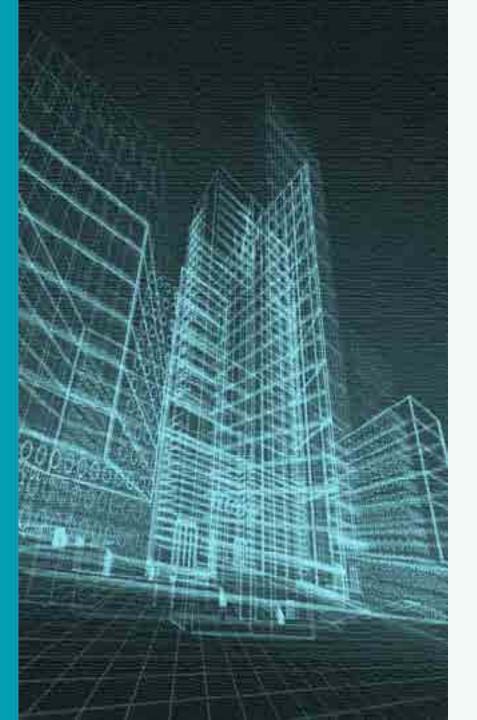
- A paradigm shift: from investment costs to lifetime assessment of the building costs
- Recent BPIE studies reveal that nearly zero-energy buildings do not induce high additional costs:
 - 2-8% additional cost as comparing to actual practice in Germany
 - Up to 0.15 euro/m² in Austria (compared to actual operational cost of 0.5-1.5 euro/m²)
 - Cost effective options in Poland, Bulgaria and Romania

Renewables are cost-effective solutions to heat and cool buildings, in particular if these buildings have low energy demand

Moving towards nearly zero-energy buildings

Holistic solutions are needed

Energy efficiency measures



Renewable energy systems

- A zero-energy buildings future cannot be reached **exclusively** either by energy efficiency improvements or renewable energy options
- Exploit synergies to achieve realistic and optimal solutions, adaptable to varied climate and affordable at varied purchase power

Thank you!

All reports are available on <u>www.bpie.eu</u>

BPIE Data Hub: www.buildingsdata.eu

